Files
cell/bench.ce
2026-01-23 11:03:32 -06:00

575 lines
16 KiB
Plaintext

var shop = use('internal/shop')
var pkg = use('package')
var fd = use('fd')
var time = use('time')
var json = use('json')
var blob = use('blob')
var os = use('os')
var testlib = use('internal/testlib')
var math = use('math/radians')
if (!args) args = []
var target_pkg = null // null = current package
var target_bench = null // null = all benchmarks, otherwise specific bench file
var all_pkgs = false
// Benchmark configuration
def WARMUP_BATCHES = 3
def SAMPLES = 11 // Number of timing samples to collect
def TARGET_SAMPLE_NS = 20000000 // 20ms per sample (fast mode)
def MIN_SAMPLE_NS = 2000000 // 2ms minimum sample duration
def MIN_BATCH_SIZE = 1
def MAX_BATCH_SIZE = 100000000 // 100M iterations max per batch
// Statistical functions
function median(arr) {
if (length(arr) == 0) return 0
var sorted = sort(arr)
var mid = floor(length(arr) / 2)
if (length(arr) % 2 == 0) {
return (sorted[mid - 1] + sorted[mid]) / 2
}
return sorted[mid]
}
function mean(arr) {
if (length(arr) == 0) return 0
var sum = 0
arrfor(arr, function(val) {
sum += val
})
return sum / length(arr)
}
function stddev(arr, mean_val) {
if (length(arr) < 2) return 0
var sum_sq_diff = 0
arrfor(arr, function(val) {
var diff = val - mean_val
sum_sq_diff += diff * diff
})
return math.sqrt(sum_sq_diff / (length(arr) - 1))
}
function percentile(arr, p) {
if (length(arr) == 0) return 0
var sorted = sort(arr)
var idx = floor(arr) * p / 100
if (idx >= length(arr)) idx = length(arr) - 1
return sorted[idx]
}
// Parse arguments similar to test.ce
function parse_args() {
if (length(args) == 0) {
if (!testlib.is_valid_package('.')) {
log.console('No cell.toml found in current directory')
return false
}
target_pkg = null
return true
}
if (args[0] == 'all') {
if (!testlib.is_valid_package('.')) {
log.console('No cell.toml found in current directory')
return false
}
target_pkg = null
return true
}
if (args[0] == 'package') {
if (length(args) < 2) {
log.console('Usage: cell bench package <name> [bench]')
log.console(' cell bench package all')
return false
}
if (args[1] == 'all') {
all_pkgs = true
log.console('Benchmarking all packages...')
return true
}
var name = args[1]
var lock = shop.load_lock()
if (lock[name]) {
target_pkg = name
} else if (starts_with(name, '/') && testlib.is_valid_package(name)) {
target_pkg = name
} else {
if (testlib.is_valid_package('.')) {
var resolved = pkg.alias_to_package(null, name)
if (resolved) {
target_pkg = resolved
} else {
log.console(`Package not found: ${name}`)
return false
}
} else {
log.console(`Package not found: ${name}`)
return false
}
}
if (length(args) >= 3) {
target_bench = args[2]
}
log.console(`Benchmarking package: ${target_pkg}`)
return true
}
// cell bench benches/suite or cell bench <path>
var bench_path = args[0]
// Normalize path - add benches/ prefix if not present
if (!starts_with(bench_path, 'benches/') && !starts_with(bench_path, '/')) {
if (!fd.is_file(bench_path + '.cm') && !fd.is_file(bench_path)) {
if (fd.is_file('benches/' + bench_path + '.cm') || fd.is_file('benches/' + bench_path)) {
bench_path = 'benches/' + bench_path
}
}
}
target_bench = bench_path
target_pkg = null
if (!testlib.is_valid_package('.')) {
log.console('No cell.toml found in current directory')
return false
}
return true
}
if (!parse_args()) {
$stop()
return
}
// Collect benchmark files from a package
function collect_benches(package_name, specific_bench) {
var prefix = testlib.get_pkg_dir(package_name)
var benches_dir = prefix + '/benches'
if (!fd.is_dir(benches_dir)) return []
var files = pkg.list_files(package_name)
var bench_files = []
arrfor(files, function(f) {
if (starts_with(f, "benches/") && ends_with(f, ".cm")) {
if (specific_bench) {
var bench_name = text(f, 0, -3)
var match_name = specific_bench
if (!starts_with(match_name, 'benches/')) match_name = 'benches/' + match_name
var match_base = ends_with(match_name, '.cm') ? text(match_name, 0, -3) : match_name
if (bench_name != match_base) return
}
push(bench_files, f)
}
})
return bench_files
}
// Calibrate batch size for a benchmark
function calibrate_batch_size(bench_fn, is_batch) {
if (!is_batch) return 1
var n = MIN_BATCH_SIZE
var dt = 0
// Find a batch size that takes at least MIN_SAMPLE_NS
while (n < MAX_BATCH_SIZE) {
// Ensure n is a valid number before calling
if (!is_number(n) || n < 1) {
n = 1
break
}
var start = os.now()
bench_fn(n)
dt = os.now() - start
if (dt >= MIN_SAMPLE_NS) break
// Double the batch size
var new_n = n * 2
// Check if multiplication produced a valid number
if (!is_number(new_n) || new_n > MAX_BATCH_SIZE) {
n = MAX_BATCH_SIZE
break
}
n = new_n
}
// Adjust to target sample duration
if (dt > 0 && dt < TARGET_SAMPLE_NS && is_number(n) && is_number(dt)) {
var calc = n * TARGET_SAMPLE_NS / dt
if (is_number(calc) && calc > 0) {
var target_n = floor(calc)
// Check if floor returned a valid number
if (is_number(target_n) && target_n > 0) {
if (target_n > MAX_BATCH_SIZE) target_n = MAX_BATCH_SIZE
if (target_n < MIN_BATCH_SIZE) target_n = MIN_BATCH_SIZE
n = target_n
}
}
}
// Safety check - ensure we always return a valid batch size
if (!is_number(n) || n < 1) {
n = 1
}
return n
}
// Run a single benchmark function
function run_single_bench(bench_fn, bench_name) {
var timings_per_op = []
// Detect benchmark format:
// 1. Object with { setup, run, teardown } - structured format
// 2. Function that accepts (n) - batch format
// 3. Function that accepts () - legacy format
var is_structured = is_object(bench_fn) && bench_fn.run
var is_batch = false
var batch_size = 1
var setup_fn = null
var run_fn = null
var teardown_fn = null
if (is_structured) {
setup_fn = bench_fn.setup || function() { return null }
run_fn = bench_fn.run
teardown_fn = bench_fn.teardown || function(state) {}
// Check if run function accepts batch size
try {
var test_state = setup_fn()
run_fn(1, test_state)
is_batch = true
if (teardown_fn) teardown_fn(test_state)
} catch (e) {
is_batch = false
}
// Create wrapper for calibration
var calibrate_fn = function(n) {
var state = setup_fn()
run_fn(n, state)
if (teardown_fn) teardown_fn(state)
}
batch_size = calibrate_batch_size(calibrate_fn, is_batch)
// Safety check for structured benchmarks
if (!is_number(batch_size) || batch_size < 1) {
batch_size = 1
}
} else {
// Simple function format
try {
bench_fn(1)
is_batch = true
} catch (e) {
is_batch = false
}
batch_size = calibrate_batch_size(bench_fn, is_batch)
}
// Safety check - ensure batch_size is valid
if (!batch_size || batch_size < 1) {
batch_size = 1
}
// Warmup phase
for (var i = 0; i < WARMUP_BATCHES; i++) {
// Ensure batch_size is valid before warmup
if (!is_number(batch_size) || batch_size < 1) {
var type_str = is_null(batch_size) ? 'null' : is_number(batch_size) ? 'number' : is_text(batch_size) ? 'text' : is_object(batch_size) ? 'object' : is_array(batch_size) ? 'array' : is_function(batch_size) ? 'function' : is_logical(batch_size) ? 'logical' : 'unknown'
log.console(`WARNING: batch_size became ${type_str} = ${batch_size}, resetting to 1`)
batch_size = 1
}
if (is_structured) {
var state = setup_fn()
if (is_batch) {
run_fn(batch_size, state)
} else {
run_fn(state)
}
if (teardown_fn) teardown_fn(state)
} else {
if (is_batch) {
bench_fn(batch_size)
} else {
bench_fn()
}
}
}
// Measurement phase - collect SAMPLES timing samples
for (var i = 0; i < SAMPLES; i++) {
// Double-check batch_size is valid (should never happen, but defensive)
if (!is_number(batch_size) || batch_size < 1) {
batch_size = 1
}
if (is_structured) {
var state = setup_fn()
var start = os.now()
if (is_batch) {
run_fn(batch_size, state)
} else {
run_fn(state)
}
var duration = os.now() - start
if (teardown_fn) teardown_fn(state)
var ns_per_op = is_batch ? duration / batch_size : duration
push(timings_per_op, ns_per_op)
} else {
var start = os.now()
if (is_batch) {
bench_fn(batch_size)
} else {
bench_fn()
}
var duration = os.now() - start
var ns_per_op = is_batch ? duration / batch_size : duration
push(timings_per_op, ns_per_op)
}
}
// Calculate statistics
var mean_ns = mean(timings_per_op)
var median_ns = median(timings_per_op)
var min_ns = reduce(timings_per_op, min)
var max_ns = reduce(timings_per_op, max)
var stddev_ns = stddev(timings_per_op, mean_ns)
var p95_ns = percentile(timings_per_op, 95)
var p99_ns = percentile(timings_per_op, 99)
// Calculate ops/s from median
var ops_per_sec = 0
if (median_ns > 0) {
ops_per_sec = floor(1000000000 / median_ns)
}
return {
name: bench_name,
batch_size: batch_size,
samples: SAMPLES,
mean_ns: round(mean_ns),
median_ns: round(median_ns),
min_ns: round(min_ns),
max_ns: round(max_ns),
stddev_ns: round(stddev_ns),
p95_ns: round(p95_ns),
p99_ns: round(p99_ns),
ops_per_sec: ops_per_sec
}
}
// Format nanoseconds for display
function format_ns(ns) {
if (ns < 1000) return `${ns}ns`
if (ns < 1000000) return `${round(ns / 1000 * 100) / 100}µs`
if (ns < 1000000000) return `${round(ns / 1000000 * 100) / 100}ms`
return `${round(ns / 1000000000 * 100) / 100}s`
}
// Format ops/sec for display
function format_ops(ops) {
if (ops < 1000) return `${ops} ops/s`
if (ops < 1000000) return `${round(ops / 1000 * 100) / 100}K ops/s`
if (ops < 1000000000) return `${round(ops / 1000000 * 100) / 100}M ops/s`
return `${round(ops / 1000000000 * 100) / 100}G ops/s`
}
// Run benchmarks for a package
function run_benchmarks(package_name, specific_bench) {
var bench_files = collect_benches(package_name, specific_bench)
var pkg_result = {
package: package_name || "local",
files: [],
total: 0
}
if (length(bench_files) == 0) return pkg_result
if (package_name) log.console(`Running benchmarks for ${package_name}`)
else log.console(`Running benchmarks for local package`)
arrfor(bench_files, function(f) {
var mod_path = text(f, 0, -3)
var file_result = {
name: f,
benchmarks: []
}
try {
var bench_mod
var use_pkg = package_name ? package_name : fd.realpath('.')
bench_mod = shop.use(mod_path, use_pkg)
var benches = []
if (is_function(bench_mod)) {
push(benches, {name: 'main', fn: bench_mod})
} else if (is_object(bench_mod)) {
arrfor(array(bench_mod), function(k) {
if (is_function(bench_mod[k]))
push(benches, {name: k, fn: bench_mod[k]})
})
}
if (length(benches) > 0) {
log.console(` ${f}`)
arrfor(benches, function(b) {
try {
var result = run_single_bench(b.fn, b.name)
result.package = pkg_result.package
push(file_result.benchmarks, result)
pkg_result.total++
log.console(` ${result.name}`)
log.console(` ${format_ns(result.median_ns)}/op ${format_ops(result.ops_per_sec)}`)
log.console(` min: ${format_ns(result.min_ns)} max: ${format_ns(result.max_ns)} stddev: ${format_ns(result.stddev_ns)}`)
if (result.batch_size > 1) {
log.console(` batch: ${result.batch_size} samples: ${result.samples}`)
}
} catch (e) {
log.console(` ERROR ${b.name}: ${e}`)
log.error(e)
var error_result = {
package: pkg_result.package,
name: b.name,
error: e.toString()
}
push(file_result.benchmarks, error_result)
pkg_result.total++
}
})
}
} catch (e) {
log.console(` Error loading ${f}: ${e}`)
var error_result = {
package: pkg_result.package,
name: "load_module",
error: `Error loading module: ${e}`
}
push(file_result.benchmarks, error_result)
pkg_result.total++
}
if (length(file_result.benchmarks) > 0) {
push(pkg_result.files, file_result)
}
})
return pkg_result
}
// Run all benchmarks
var all_results = []
if (all_pkgs) {
if (testlib.is_valid_package('.')) {
push(all_results, run_benchmarks(null, null))
}
var packages = shop.list_packages()
arrfor(packages, function(pkg) {
push(all_results, run_benchmarks(pkg, null))
})
} else {
push(all_results, run_benchmarks(target_pkg, target_bench))
}
// Calculate totals
var total_benches = 0
arrfor(all_results, function(result) {
total_benches += result.total
})
log.console(`----------------------------------------`)
log.console(`Benchmarks: ${total_benches} total`)
// Generate reports
function generate_reports() {
var timestamp = text(floor(time.number()))
var report_dir = shop.get_reports_dir() + '/bench_' + timestamp
testlib.ensure_dir(report_dir)
var txt_report = `BENCHMARK REPORT
Date: ${time.text(time.number())}
Total benchmarks: ${total_benches}
=== SUMMARY ===
`
arrfor(all_results, function(pkg_res) {
if (pkg_res.total == 0) return
txt_report += `Package: ${pkg_res.package}\n`
arrfor(pkg_res.files, function(f) {
txt_report += ` ${f.name}\n`
arrfor(f.benchmarks, function(b) {
if (b.error) {
txt_report += ` ERROR ${b.name}: ${b.error}\n`
} else {
txt_report += ` ${b.name}: ${format_ns(b.median_ns)}/op (${format_ops(b.ops_per_sec)})\n`
}
})
})
})
txt_report += `\n=== DETAILED RESULTS ===\n`
arrfor(all_results, function(pkg_res) {
if (pkg_res.total == 0) return
arrfor(pkg_res.files, function(f) {
arrfor(f.benchmarks, function(b) {
if (b.error) return
txt_report += `\n${pkg_res.package}::${b.name}\n`
txt_report += ` batch_size: ${b.batch_size} samples: ${b.samples}\n`
txt_report += ` median: ${format_ns(b.median_ns)}/op\n`
txt_report += ` mean: ${format_ns(b.mean_ns)}/op\n`
txt_report += ` min: ${format_ns(b.min_ns)}\n`
txt_report += ` max: ${format_ns(b.max_ns)}\n`
txt_report += ` stddev: ${format_ns(b.stddev_ns)}\n`
txt_report += ` p95: ${format_ns(b.p95_ns)}\n`
txt_report += ` p99: ${format_ns(b.p99_ns)}\n`
txt_report += ` ops/s: ${format_ops(b.ops_per_sec)}\n`
})
})
})
testlib.ensure_dir(report_dir)
fd.slurpwrite(`${report_dir}/bench.txt`, stone(blob(txt_report)))
log.console(`Report written to ${report_dir}/bench.txt`)
// Generate JSON per package
arrfor(all_results, function(pkg_res) {
if (pkg_res.total == 0) return
var pkg_benches = []
arrfor(pkg_res.files, function(f) {
arrfor(f.benchmarks, function(benchmark) {
push(pkg_benches, benchmark)
})
})
var json_path = `${report_dir}/${replace(pkg_res.package, /\//, '_')}.json`
fd.slurpwrite(json_path, stone(blob(json.encode(pkg_benches))))
})
}
generate_reports()
$stop()