310 lines
6.8 KiB
C
310 lines
6.8 KiB
C
#include "cell.h"
|
|
|
|
#include "stb_ds.h"
|
|
|
|
#include "HandmadeMath.h"
|
|
#include <SDL3/SDL.h>
|
|
|
|
#include "math.h"
|
|
#include "time.h"
|
|
|
|
#define CGLTF_IMPLEMENTATION
|
|
#include "cgltf.h"
|
|
|
|
#include <limits.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
|
|
struct keyframe {
|
|
double time;
|
|
double val;
|
|
};
|
|
|
|
#define LINEAR 0
|
|
#define STEP 1
|
|
#define CUBICSPLINE 2
|
|
#define SLERP 3
|
|
|
|
typedef struct sampler {
|
|
float *times;
|
|
HMM_Vec4 *data;
|
|
int type;
|
|
} sampler;
|
|
|
|
struct anim_channel {
|
|
HMM_Vec4 *target;
|
|
int comps;
|
|
struct sampler *sampler;
|
|
};
|
|
|
|
typedef struct animation {
|
|
double time;
|
|
struct anim_channel *channels;
|
|
sampler *samplers;
|
|
} animation;
|
|
|
|
|
|
HMM_Vec4 sample_cubicspline(sampler *sampler, float t, int prev, int next)
|
|
{
|
|
HMM_Vec4 ret;
|
|
HMM_Quat qv = HMM_SLerp(HMM_QV4(sampler->data[prev]), t, HMM_QV4(sampler->data[next]));
|
|
memcpy(ret.e, qv.e, sizeof(ret.e));
|
|
return ret;
|
|
}
|
|
|
|
HMM_Vec4 sample_sampler(sampler *sampler, float time)
|
|
{
|
|
if (arrlen(sampler->data) == 0) return v4zero;
|
|
if (arrlen(sampler->data) == 1) return sampler->data[0];
|
|
int previous_time=0;
|
|
int next_time=0;
|
|
|
|
for (int i = 1; i < arrlen(sampler->times); i++) {
|
|
if (time < sampler->times[i]) {
|
|
previous_time = i-1;
|
|
next_time = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
float td = sampler->times[next_time]-sampler->times[previous_time];
|
|
float t = (time - sampler->times[previous_time])/td;
|
|
|
|
HMM_Vec4 ret;
|
|
HMM_Quat qv;
|
|
|
|
switch(sampler->type) {
|
|
case LINEAR:
|
|
return HMM_LerpV4(sampler->data[previous_time],time,sampler->data[next_time]);
|
|
break;
|
|
case STEP:
|
|
return sampler->data[previous_time];
|
|
break;
|
|
case CUBICSPLINE:
|
|
return sample_cubicspline(sampler,t, previous_time, next_time);
|
|
break;
|
|
case SLERP:
|
|
qv = HMM_SLerp(sampler->data[previous_time].quat, time, sampler->data[next_time].quat);
|
|
memcpy(ret.e,qv.e,sizeof(ret.e));
|
|
return ret;
|
|
break;
|
|
}
|
|
return sample_cubicspline(sampler,t, previous_time, next_time);
|
|
}
|
|
|
|
|
|
void animation_run(struct animation *anim, float now)
|
|
{
|
|
float elapsed = now - anim->time;
|
|
elapsed = fmod(elapsed,2);
|
|
if (!anim->channels) return;
|
|
|
|
for (int i = 0; i < arrlen(anim->channels); i++) {
|
|
struct anim_channel *ch = anim->channels+i;
|
|
HMM_Vec4 s = sample_sampler(ch->sampler, elapsed);
|
|
*(ch->target) = s;
|
|
}
|
|
}
|
|
|
|
|
|
#define MAT_POS 0
|
|
#define MAT_UV 1
|
|
#define MAT_NORM 2
|
|
#define MAT_BONE 3
|
|
#define MAT_WEIGHT 4
|
|
#define MAT_COLOR 5
|
|
#define MAT_TAN 6
|
|
#define MAT_ANGLE 7
|
|
#define MAT_WH 8
|
|
#define MAT_ST 9
|
|
#define MAT_PPOS 10
|
|
#define MAT_SCALE 11
|
|
#define MAT_INDEX 100
|
|
|
|
typedef struct md5joint {
|
|
struct md5joint *parent;
|
|
HMM_Vec4 pos;
|
|
HMM_Quat rot;
|
|
HMM_Vec4 scale;
|
|
HMM_Mat4 t;
|
|
} md5joint;
|
|
|
|
typedef struct skin {
|
|
md5joint *joints;
|
|
HMM_Mat4 *invbind;
|
|
HMM_Mat4 binds[50]; /* binds = joint * invbind */
|
|
animation *anim;
|
|
} skin;
|
|
|
|
SDL_GPUBuffer *texcoord_floats(float *f, int n)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
SDL_GPUBuffer *float_buffer(float *f, int v)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
SDL_GPUBuffer *index_buffer(float *f, int verts)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
uint32_t pack_int10_n2(float *norm)
|
|
{
|
|
uint32_t ret = 0;
|
|
for (int i = 0; i < 3; i++) {
|
|
int n = (norm[i]+1.0)*511;
|
|
ret |= (n & 0x3ff) << (10*i);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Pack an array of normals into
|
|
SDL_GPUBuffer *normal_floats(float *f, int n)
|
|
{
|
|
return float_buffer(f, n);
|
|
}
|
|
|
|
SDL_GPUBuffer *ubyten_buffer(float *f, int v)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
SDL_GPUBuffer *ubyte_buffer(float *f, int v)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
SDL_GPUBuffer *accessor2buffer(cgltf_accessor *a, int type)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
void packFloats(float *src, float *dest, int srcLength) {
|
|
int i, j;
|
|
for (i = 0, j = 0; i < srcLength; i += 3, j += 4) {
|
|
dest[j] = src[i];
|
|
dest[j + 1] = src[i + 1];
|
|
dest[j + 2] = src[i + 2];
|
|
dest[j + 3] = 0.0f;
|
|
}
|
|
}
|
|
|
|
static md5joint *node2joint(skin *sk, cgltf_node *n, cgltf_skin *skin)
|
|
{
|
|
int k = 0;
|
|
while (skin->joints[k] != n && k < skin->joints_count) k++;
|
|
return sk->joints+k;
|
|
}
|
|
|
|
animation *gltf_anim(cgltf_animation *anim, skin *sk, cgltf_skin *skin)
|
|
{
|
|
animation *ret = calloc(sizeof(*ret), 1);
|
|
animation an = *ret;
|
|
arrsetlen(an.samplers, anim->samplers_count);
|
|
|
|
for (int i = 0; i < anim->samplers_count; i++) {
|
|
cgltf_animation_sampler s = anim->samplers[i];
|
|
sampler samp = (sampler){0};
|
|
int n = cgltf_accessor_unpack_floats(s.input, NULL, 0);
|
|
arrsetlen(samp.times, n);
|
|
cgltf_accessor_unpack_floats(s.input, samp.times, n);
|
|
|
|
n = cgltf_accessor_unpack_floats(s.output, NULL, 0);
|
|
int comp = cgltf_num_components(s.output->type);
|
|
arrsetlen(samp.data, n/comp);
|
|
if (comp == 4)
|
|
cgltf_accessor_unpack_floats(s.output, samp.data, n);
|
|
else {
|
|
float *out = malloc(sizeof(*out)*n);
|
|
cgltf_accessor_unpack_floats(s.output, out, n);
|
|
packFloats(out, samp.data, n);
|
|
free(out);
|
|
}
|
|
|
|
samp.type = s.interpolation;
|
|
|
|
if (samp.type == LINEAR && comp == 4)
|
|
samp.type = SLERP;
|
|
|
|
an.samplers[i] = samp;
|
|
}
|
|
|
|
for (int i = 0; i < anim->channels_count; i++) {
|
|
cgltf_animation_channel ch = anim->channels[i];
|
|
struct anim_channel ach = (struct anim_channel){0};
|
|
md5joint *md = node2joint(sk, ch.target_node, skin);
|
|
switch(ch.target_path) {
|
|
case cgltf_animation_path_type_translation:
|
|
ach.target = &md->pos;
|
|
break;
|
|
case cgltf_animation_path_type_rotation:
|
|
ach.target = &md->rot;
|
|
break;
|
|
case cgltf_animation_path_type_scale:
|
|
ach.target = &md->scale;
|
|
break;
|
|
default: break;
|
|
}
|
|
ach.sampler = an.samplers+(ch.sampler-anim->samplers);
|
|
|
|
arrput(an.channels, ach);
|
|
}
|
|
|
|
an.time = 0;
|
|
|
|
*ret = an;
|
|
return ret;
|
|
}
|
|
|
|
skin *make_gltf_skin(cgltf_skin *skin, cgltf_data *data)
|
|
{
|
|
int n = cgltf_accessor_unpack_floats(skin->inverse_bind_matrices, NULL, 0);
|
|
struct skin *sk = NULL;
|
|
sk = calloc(sizeof(*sk),1);
|
|
arrsetlen(sk->invbind, n/16);
|
|
cgltf_accessor_unpack_floats(skin->inverse_bind_matrices, sk->invbind, n);
|
|
|
|
arrsetlen(sk->joints, skin->joints_count);
|
|
|
|
for (int i = 0; i < 50; i++)
|
|
sk->binds[i] = MAT1;
|
|
|
|
for (int i = 0; i < skin->joints_count; i++) {
|
|
cgltf_node *n = skin->joints[i];
|
|
md5joint *j = sk->joints+i;
|
|
|
|
if (n == skin->skeleton)
|
|
j->parent = NULL;
|
|
else
|
|
j->parent = node2joint(sk, n->parent, skin);
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
j->pos.e[i] = n->translation[i];
|
|
j->scale.e[i] = n->scale[i];
|
|
}
|
|
for (int i = 0; i < 4; i++)
|
|
j->rot.e[i] = n->rotation[i];
|
|
}
|
|
|
|
sk->anim = gltf_anim(data->animations+0, sk, skin);
|
|
|
|
return sk;
|
|
}
|
|
|
|
void skin_calculate(skin *sk)
|
|
{
|
|
// animation_run(sk->anim, apptime());
|
|
for (int i = 0; i < arrlen(sk->joints); i++) {
|
|
md5joint *md = sk->joints+i;
|
|
md->t = HMM_M4TRS(md->pos.xyz, md->rot, md->scale.xyz);
|
|
if (md->parent)
|
|
md->t = HMM_MulM4(md->parent->t, md->t);
|
|
|
|
sk->binds[i] = HMM_MulM4(md->t, sk->invbind[i]);
|
|
}
|
|
}
|