initial add
This commit is contained in:
2
cell.toml
Normal file
2
cell.toml
Normal file
@@ -0,0 +1,2 @@
|
|||||||
|
[dependencies]
|
||||||
|
libsamplerate = "gitea.pockle.world/john/cell-libsamplerate"
|
||||||
173
dsp.c
Normal file
173
dsp.c
Normal file
@@ -0,0 +1,173 @@
|
|||||||
|
#include "cell.h"
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <string.h>
|
||||||
|
#include <math.h>
|
||||||
|
|
||||||
|
// dsp.mix_blobs(blobs, volumes)
|
||||||
|
// blobs: Array of stoned blobs (stereo f32 PCM, all same length)
|
||||||
|
// volumes: Array of floats (volume per blob)
|
||||||
|
// returns: stoned blob (mixed audio)
|
||||||
|
// All blobs must be the same byte length.
|
||||||
|
JSC_CCALL(dsp_mix_blobs,
|
||||||
|
if (argc < 2) return JS_ThrowTypeError(js, "dsp.mix_blobs(blobs, volumes) requires 2 arguments");
|
||||||
|
|
||||||
|
JSValue blobs_arr = argv[0];
|
||||||
|
JSValue vols_arr = argv[1];
|
||||||
|
if (!JS_IsArray(js, blobs_arr)) return JS_ThrowTypeError(js, "blobs must be an array");
|
||||||
|
if (!JS_IsArray(js, vols_arr)) return JS_ThrowTypeError(js, "volumes must be an array");
|
||||||
|
|
||||||
|
int len = 0;
|
||||||
|
JSValue len_val = JS_GetPropertyStr(js, blobs_arr, "length");
|
||||||
|
JS_ToInt32(js, &len, len_val);
|
||||||
|
JS_FreeValue(js, len_val);
|
||||||
|
|
||||||
|
if (len == 0) {
|
||||||
|
// Return empty stoned blob
|
||||||
|
return js_new_blob_stoned_copy(js, NULL, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Get first blob to determine output size
|
||||||
|
JSValue first_blob = JS_GetPropertyUint32(js, blobs_arr, 0);
|
||||||
|
size_t out_bytes;
|
||||||
|
float *first_data = (float*)js_get_blob_data(js, &out_bytes, first_blob);
|
||||||
|
JS_FreeValue(js, first_blob);
|
||||||
|
if (first_data == (void*)-1) return JS_EXCEPTION;
|
||||||
|
if (out_bytes == 0) return js_new_blob_stoned_copy(js, NULL, 0);
|
||||||
|
|
||||||
|
size_t num_samples = out_bytes / sizeof(float);
|
||||||
|
float *mix_buf = calloc(num_samples, sizeof(float));
|
||||||
|
if (!mix_buf) return JS_ThrowOutOfMemory(js);
|
||||||
|
|
||||||
|
for (int i = 0; i < len; i++) {
|
||||||
|
JSValue blob_val = JS_GetPropertyUint32(js, blobs_arr, i);
|
||||||
|
JSValue vol_val = JS_GetPropertyUint32(js, vols_arr, i);
|
||||||
|
|
||||||
|
size_t blob_len;
|
||||||
|
float *blob_data = (float*)js_get_blob_data(js, &blob_len, blob_val);
|
||||||
|
JS_FreeValue(js, blob_val);
|
||||||
|
if (blob_data == (void*)-1) {
|
||||||
|
JS_FreeValue(js, vol_val);
|
||||||
|
free(mix_buf);
|
||||||
|
return JS_EXCEPTION;
|
||||||
|
}
|
||||||
|
|
||||||
|
double vol = 1.0;
|
||||||
|
JS_ToFloat64(js, &vol, vol_val);
|
||||||
|
JS_FreeValue(js, vol_val);
|
||||||
|
|
||||||
|
// Mix samples (use min length to avoid overrun)
|
||||||
|
size_t samples = blob_len / sizeof(float);
|
||||||
|
if (samples > num_samples) samples = num_samples;
|
||||||
|
for (size_t s = 0; s < samples; s++) {
|
||||||
|
mix_buf[s] += blob_data[s] * (float)vol;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
JSValue result = js_new_blob_stoned_copy(js, mix_buf, out_bytes);
|
||||||
|
free(mix_buf);
|
||||||
|
return result;
|
||||||
|
)
|
||||||
|
|
||||||
|
// dsp.lpf(blob, options)
|
||||||
|
// blob: stoned blob (stereo f32 PCM)
|
||||||
|
// options: { cutoff: 0.0-1.0 (normalized frequency), channels: 2 }
|
||||||
|
// returns: stoned blob (filtered audio)
|
||||||
|
// Simple one-pole lowpass filter per channel
|
||||||
|
JSC_CCALL(dsp_lpf,
|
||||||
|
if (argc < 2) return JS_ThrowTypeError(js, "dsp.lpf(blob, options) requires 2 arguments");
|
||||||
|
|
||||||
|
size_t len;
|
||||||
|
float *data = (float*)js_get_blob_data(js, &len, argv[0]);
|
||||||
|
if (data == (void*)-1) return JS_EXCEPTION;
|
||||||
|
if (len == 0) return js_new_blob_stoned_copy(js, NULL, 0);
|
||||||
|
|
||||||
|
// Get options
|
||||||
|
double cutoff = 0.5;
|
||||||
|
int32_t channels = 2;
|
||||||
|
JSValue cutoff_val = JS_GetPropertyStr(js, argv[1], "cutoff");
|
||||||
|
JSValue channels_val = JS_GetPropertyStr(js, argv[1], "channels");
|
||||||
|
if (!JS_IsNull(cutoff_val)) JS_ToFloat64(js, &cutoff, cutoff_val);
|
||||||
|
if (!JS_IsNull(channels_val)) JS_ToInt32(js, &channels, channels_val);
|
||||||
|
JS_FreeValue(js, cutoff_val);
|
||||||
|
JS_FreeValue(js, channels_val);
|
||||||
|
|
||||||
|
if (cutoff < 0.0) cutoff = 0.0;
|
||||||
|
if (cutoff > 1.0) cutoff = 1.0;
|
||||||
|
if (channels < 1) channels = 1;
|
||||||
|
|
||||||
|
// Compute filter coefficient (simple one-pole: y[n] = alpha*x[n] + (1-alpha)*y[n-1])
|
||||||
|
// alpha = cutoff (0 = no signal, 1 = no filtering)
|
||||||
|
float alpha = (float)cutoff;
|
||||||
|
|
||||||
|
size_t num_samples = len / sizeof(float);
|
||||||
|
float *out = malloc(len);
|
||||||
|
if (!out) return JS_ThrowOutOfMemory(js);
|
||||||
|
|
||||||
|
// Allocate state per channel
|
||||||
|
float *prev = calloc(channels, sizeof(float));
|
||||||
|
if (!prev) { free(out); return JS_ThrowOutOfMemory(js); }
|
||||||
|
|
||||||
|
for (size_t i = 0; i < num_samples; i++) {
|
||||||
|
int ch = i % channels;
|
||||||
|
float x = data[i];
|
||||||
|
float y = alpha * x + (1.0f - alpha) * prev[ch];
|
||||||
|
prev[ch] = y;
|
||||||
|
out[i] = y;
|
||||||
|
}
|
||||||
|
|
||||||
|
free(prev);
|
||||||
|
JSValue result = js_new_blob_stoned_copy(js, out, len);
|
||||||
|
free(out);
|
||||||
|
return result;
|
||||||
|
)
|
||||||
|
|
||||||
|
// dsp.silence(frames, channels)
|
||||||
|
// Returns a stoned blob of silence (zeroed f32 samples)
|
||||||
|
JSC_CCALL(dsp_silence,
|
||||||
|
int32_t frames = 1024;
|
||||||
|
int32_t channels = 2;
|
||||||
|
if (argc >= 1) JS_ToInt32(js, &frames, argv[0]);
|
||||||
|
if (argc >= 2) JS_ToInt32(js, &channels, argv[1]);
|
||||||
|
if (frames < 0) frames = 0;
|
||||||
|
if (channels < 1) channels = 1;
|
||||||
|
|
||||||
|
size_t bytes = (size_t)frames * channels * sizeof(float);
|
||||||
|
float *buf = calloc(frames * channels, sizeof(float));
|
||||||
|
if (!buf) return JS_ThrowOutOfMemory(js);
|
||||||
|
|
||||||
|
JSValue result = js_new_blob_stoned_copy(js, buf, bytes);
|
||||||
|
free(buf);
|
||||||
|
return result;
|
||||||
|
)
|
||||||
|
|
||||||
|
// dsp.mono_to_stereo(blob)
|
||||||
|
// Converts a mono f32 blob to stereo by duplicating samples
|
||||||
|
JSC_CCALL(dsp_mono_to_stereo,
|
||||||
|
size_t len;
|
||||||
|
float *data = (float*)js_get_blob_data(js, &len, argv[0]);
|
||||||
|
if (data == (void*)-1) return JS_EXCEPTION;
|
||||||
|
if (len == 0) return js_new_blob_stoned_copy(js, NULL, 0);
|
||||||
|
|
||||||
|
size_t mono_samples = len / sizeof(float);
|
||||||
|
size_t stereo_bytes = mono_samples * 2 * sizeof(float);
|
||||||
|
float *out = malloc(stereo_bytes);
|
||||||
|
if (!out) return JS_ThrowOutOfMemory(js);
|
||||||
|
|
||||||
|
for (size_t i = 0; i < mono_samples; i++) {
|
||||||
|
out[i * 2] = data[i];
|
||||||
|
out[i * 2 + 1] = data[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
JSValue result = js_new_blob_stoned_copy(js, out, stereo_bytes);
|
||||||
|
free(out);
|
||||||
|
return result;
|
||||||
|
)
|
||||||
|
|
||||||
|
static const JSCFunctionListEntry js_dsp_funcs[] = {
|
||||||
|
MIST_FUNC_DEF(dsp, mix_blobs, 2),
|
||||||
|
MIST_FUNC_DEF(dsp, lpf, 2),
|
||||||
|
MIST_FUNC_DEF(dsp, silence, 2),
|
||||||
|
MIST_FUNC_DEF(dsp, mono_to_stereo, 1)
|
||||||
|
};
|
||||||
|
|
||||||
|
CELL_USE_FUNCS(js_dsp_funcs)
|
||||||
115
flac.c
Normal file
115
flac.c
Normal file
@@ -0,0 +1,115 @@
|
|||||||
|
#include "cell.h"
|
||||||
|
|
||||||
|
#include <stdlib.h>
|
||||||
|
|
||||||
|
#define DR_FLAC_IMPLEMENTATION
|
||||||
|
#include "dr_flac.h"
|
||||||
|
|
||||||
|
static int flac_calc_size(drflac *flac, drflac_uint64 frames, size_t *out_bytes)
|
||||||
|
{
|
||||||
|
if (!flac || !out_bytes)
|
||||||
|
return -1;
|
||||||
|
|
||||||
|
if (flac->channels == 0)
|
||||||
|
return -1;
|
||||||
|
|
||||||
|
size_t bytes_per_frame = (size_t)flac->channels * sizeof(drflac_int32);
|
||||||
|
if (frames > SIZE_MAX / bytes_per_frame)
|
||||||
|
return -1;
|
||||||
|
|
||||||
|
*out_bytes = (size_t)(frames * bytes_per_frame);
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
static JSValue flac_make_info(JSContext *js, drflac *flac)
|
||||||
|
{
|
||||||
|
JSValue obj = JS_NewObject(js);
|
||||||
|
JS_SetPropertyStr(js, obj, "channels", JS_NewInt32(js, flac->channels));
|
||||||
|
JS_SetPropertyStr(js, obj, "sample_rate", JS_NewInt32(js, flac->sampleRate));
|
||||||
|
JS_SetPropertyStr(js, obj, "bits_per_sample", JS_NewInt32(js, flac->bitsPerSample));
|
||||||
|
JS_SetPropertyStr(js, obj, "total_pcm_frames", JS_NewFloat64(js, (double)flac->totalPCMFrameCount));
|
||||||
|
JS_SetPropertyStr(js, obj, "decoded_bytes_per_frame",
|
||||||
|
JS_NewInt32(js, (int)((size_t)flac->channels * sizeof(drflac_int32))));
|
||||||
|
JS_SetPropertyStr(js, obj, "format", JS_NewString(js, "s32"));
|
||||||
|
return obj;
|
||||||
|
}
|
||||||
|
|
||||||
|
JSC_CCALL(flac_info,
|
||||||
|
size_t len;
|
||||||
|
void *data = js_get_blob_data(js, &len, argv[0]);
|
||||||
|
if (data == -1)
|
||||||
|
return JS_EXCEPTION;
|
||||||
|
|
||||||
|
if (!data)
|
||||||
|
return JS_ThrowReferenceError(js, "invalid FLAC data");
|
||||||
|
|
||||||
|
drflac *flac = drflac_open_memory(data, len, NULL);
|
||||||
|
if (!flac)
|
||||||
|
return JS_ThrowReferenceError(js, "invalid FLAC data");
|
||||||
|
|
||||||
|
JSValue info = flac_make_info(js, flac);
|
||||||
|
drflac_close(flac);
|
||||||
|
return info;
|
||||||
|
)
|
||||||
|
|
||||||
|
JSC_CCALL(flac_decode,
|
||||||
|
size_t len;
|
||||||
|
void *data = js_get_blob_data(js, &len, argv[0]);
|
||||||
|
if (data == -1)
|
||||||
|
return JS_EXCEPTION;
|
||||||
|
if (!data)
|
||||||
|
return JS_ThrowTypeError(js, "flac.decode expects a blob with data");
|
||||||
|
|
||||||
|
drflac *flac = drflac_open_memory(data, len, NULL);
|
||||||
|
if (!flac)
|
||||||
|
return JS_ThrowReferenceError(js, "invalid FLAC data");
|
||||||
|
|
||||||
|
size_t pcm_bytes;
|
||||||
|
size_t bytes_per_frame = (size_t)flac->channels * sizeof(float);
|
||||||
|
|
||||||
|
if (flac->totalPCMFrameCount > SIZE_MAX / bytes_per_frame) {
|
||||||
|
drflac_close(flac);
|
||||||
|
return JS_ThrowRangeError(js, "FLAC data too large to decode");
|
||||||
|
}
|
||||||
|
pcm_bytes = (size_t)(flac->totalPCMFrameCount * bytes_per_frame);
|
||||||
|
|
||||||
|
float *pcm = NULL;
|
||||||
|
if (pcm_bytes > 0) {
|
||||||
|
pcm = malloc(pcm_bytes);
|
||||||
|
if (!pcm) {
|
||||||
|
drflac_close(flac);
|
||||||
|
return JS_ThrowOutOfMemory(js);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
drflac_uint64 frames_read = 0;
|
||||||
|
if (pcm_bytes > 0)
|
||||||
|
frames_read = drflac_read_pcm_frames_f32(flac, flac->totalPCMFrameCount, pcm);
|
||||||
|
|
||||||
|
size_t bytes_read = 0;
|
||||||
|
if (pcm_bytes > 0)
|
||||||
|
bytes_read = (size_t)(frames_read * bytes_per_frame);
|
||||||
|
|
||||||
|
JSValue result = flac_make_info(js, flac);
|
||||||
|
|
||||||
|
// Update format info
|
||||||
|
JS_SetPropertyStr(js, result, "format", JS_NewString(js, "f32"));
|
||||||
|
JS_SetPropertyStr(js, result, "decoded_bytes_per_frame", JS_NewInt32(js, (int)bytes_per_frame));
|
||||||
|
|
||||||
|
JSValue blob = js_new_blob_stoned_copy(js, pcm, bytes_read);
|
||||||
|
JS_SetPropertyStr(js, result, "pcm", blob);
|
||||||
|
free(pcm);
|
||||||
|
drflac_close(flac);
|
||||||
|
return result;
|
||||||
|
)
|
||||||
|
|
||||||
|
static const JSCFunctionListEntry js_flac_funcs[] = {
|
||||||
|
MIST_FUNC_DEF(flac, info, 1),
|
||||||
|
MIST_FUNC_DEF(flac, decode, 1)
|
||||||
|
};
|
||||||
|
|
||||||
|
CELL_USE_FUNCS(js_flac_funcs)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
105
mp3.c
Normal file
105
mp3.c
Normal file
@@ -0,0 +1,105 @@
|
|||||||
|
#include "cell.h"
|
||||||
|
|
||||||
|
#include <stdlib.h>
|
||||||
|
|
||||||
|
#define DR_MP3_IMPLEMENTATION
|
||||||
|
#include "dr_mp3.h"
|
||||||
|
|
||||||
|
static JSValue mp3_make_info(JSContext *js, drmp3_uint32 channels, drmp3_uint32 sample_rate, drmp3_uint64 frames)
|
||||||
|
{
|
||||||
|
JSValue obj = JS_NewObject(js);
|
||||||
|
JS_SetPropertyStr(js, obj, "channels", JS_NewInt32(js, channels));
|
||||||
|
JS_SetPropertyStr(js, obj, "sample_rate", JS_NewInt32(js, sample_rate));
|
||||||
|
JS_SetPropertyStr(js, obj, "bits_per_sample", JS_NewInt32(js, 16));
|
||||||
|
|
||||||
|
double total_frames = frames == DRMP3_UINT64_MAX ? -1.0 : (double)frames;
|
||||||
|
JS_SetPropertyStr(js, obj, "total_pcm_frames", JS_NewFloat64(js, total_frames));
|
||||||
|
JS_SetPropertyStr(js, obj, "decoded_bytes_per_frame",
|
||||||
|
JS_NewInt32(js, (int)((size_t)channels * sizeof(drmp3_int16))));
|
||||||
|
JS_SetPropertyStr(js, obj, "format", JS_NewString(js, "s16"));
|
||||||
|
return obj;
|
||||||
|
}
|
||||||
|
|
||||||
|
JSC_CCALL(mp3_info,
|
||||||
|
size_t len;
|
||||||
|
void *data = js_get_blob_data(js, &len, argv[0]);
|
||||||
|
if (data == -1)
|
||||||
|
return JS_EXCEPTION;
|
||||||
|
|
||||||
|
if (!data)
|
||||||
|
return JS_ThrowReferenceError(js, "invalid MP3 data");
|
||||||
|
|
||||||
|
drmp3 mp3;
|
||||||
|
if (!drmp3_init_memory(&mp3, data, len, NULL))
|
||||||
|
return JS_ThrowReferenceError(js, "invalid MP3 data");
|
||||||
|
|
||||||
|
drmp3_uint32 channels = mp3.channels;
|
||||||
|
drmp3_uint32 sample_rate = mp3.sampleRate;
|
||||||
|
drmp3_uint64 frames = mp3.totalPCMFrameCount;
|
||||||
|
if (frames == DRMP3_UINT64_MAX)
|
||||||
|
frames = drmp3_get_pcm_frame_count(&mp3);
|
||||||
|
|
||||||
|
JSValue info = mp3_make_info(js, channels, sample_rate, frames);
|
||||||
|
drmp3_uninit(&mp3);
|
||||||
|
return info;
|
||||||
|
)
|
||||||
|
|
||||||
|
static int mp3_calc_bytes(drmp3_uint32 channels, drmp3_uint64 frames, size_t *out_bytes)
|
||||||
|
{
|
||||||
|
if (!out_bytes || channels == 0)
|
||||||
|
return -1;
|
||||||
|
|
||||||
|
size_t bytes_per_frame = (size_t)channels * sizeof(drmp3_int16);
|
||||||
|
if (frames > SIZE_MAX / bytes_per_frame)
|
||||||
|
return -1;
|
||||||
|
|
||||||
|
*out_bytes = (size_t)(frames * bytes_per_frame);
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
JSC_CCALL(mp3_decode,
|
||||||
|
size_t len;
|
||||||
|
void *data = js_get_blob_data(js, &len, argv[0]);
|
||||||
|
if (data == -1)
|
||||||
|
return JS_EXCEPTION;
|
||||||
|
|
||||||
|
if (!data)
|
||||||
|
return JS_ThrowReferenceError(js, "invalid MP3 data");
|
||||||
|
|
||||||
|
drmp3_config config;
|
||||||
|
drmp3_uint64 frames = 0;
|
||||||
|
float *pcm = drmp3_open_memory_and_read_pcm_frames_f32(data, len, &config, &frames, NULL);
|
||||||
|
if (!pcm)
|
||||||
|
return JS_ThrowReferenceError(js, "failed to decode MP3 data");
|
||||||
|
|
||||||
|
size_t bytes_per_frame = (size_t)config.channels * sizeof(float);
|
||||||
|
size_t total_bytes;
|
||||||
|
|
||||||
|
if (frames > SIZE_MAX / bytes_per_frame) {
|
||||||
|
drmp3_free(pcm, NULL);
|
||||||
|
return JS_ThrowRangeError(js, "MP3 output too large");
|
||||||
|
}
|
||||||
|
total_bytes = (size_t)(frames * bytes_per_frame);
|
||||||
|
|
||||||
|
JSValue result = mp3_make_info(js, config.channels, config.sampleRate, frames);
|
||||||
|
|
||||||
|
// Update format info
|
||||||
|
JS_SetPropertyStr(js, result, "format", JS_NewString(js, "f32"));
|
||||||
|
JS_SetPropertyStr(js, result, "decoded_bytes_per_frame", JS_NewInt32(js, (int)bytes_per_frame));
|
||||||
|
|
||||||
|
JSValue blob = js_new_blob_stoned_copy(js, pcm, total_bytes);
|
||||||
|
JS_SetPropertyStr(js, result, "pcm", blob);
|
||||||
|
drmp3_free(pcm, NULL);
|
||||||
|
return result;
|
||||||
|
)
|
||||||
|
|
||||||
|
static const JSCFunctionListEntry js_mp3_funcs[] = {
|
||||||
|
MIST_FUNC_DEF(mp3, info, 1),
|
||||||
|
MIST_FUNC_DEF(mp3, decode, 1)
|
||||||
|
};
|
||||||
|
|
||||||
|
CELL_USE_FUNCS(js_mp3_funcs)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
742
qoa.h
Normal file
742
qoa.h
Normal file
@@ -0,0 +1,742 @@
|
|||||||
|
/*
|
||||||
|
|
||||||
|
Copyright (c) 2023, Dominic Szablewski - https://phoboslab.org
|
||||||
|
SPDX-License-Identifier: MIT
|
||||||
|
|
||||||
|
QOA - The "Quite OK Audio" format for fast, lossy audio compression
|
||||||
|
|
||||||
|
|
||||||
|
-- Data Format
|
||||||
|
|
||||||
|
QOA encodes pulse-code modulated (PCM) audio data with up to 255 channels,
|
||||||
|
sample rates from 1 up to 16777215 hertz and a bit depth of 16 bits.
|
||||||
|
|
||||||
|
The compression method employed in QOA is lossy; it discards some information
|
||||||
|
from the uncompressed PCM data. For many types of audio signals this compression
|
||||||
|
is "transparent", i.e. the difference from the original file is often not
|
||||||
|
audible.
|
||||||
|
|
||||||
|
QOA encodes 20 samples of 16 bit PCM data into slices of 64 bits. A single
|
||||||
|
sample therefore requires 3.2 bits of storage space, resulting in a 5x
|
||||||
|
compression (16 / 3.2).
|
||||||
|
|
||||||
|
A QOA file consists of an 8 byte file header, followed by a number of frames.
|
||||||
|
Each frame contains an 8 byte frame header, the current 16 byte en-/decoder
|
||||||
|
state per channel and 256 slices per channel. Each slice is 8 bytes wide and
|
||||||
|
encodes 20 samples of audio data.
|
||||||
|
|
||||||
|
All values, including the slices, are big endian. The file layout is as follows:
|
||||||
|
|
||||||
|
struct {
|
||||||
|
struct {
|
||||||
|
char magic[4]; // magic bytes "qoaf"
|
||||||
|
uint32_t samples; // samples per channel in this file
|
||||||
|
} file_header;
|
||||||
|
|
||||||
|
struct {
|
||||||
|
struct {
|
||||||
|
uint8_t num_channels; // no. of channels
|
||||||
|
uint24_t samplerate; // samplerate in hz
|
||||||
|
uint16_t fsamples; // samples per channel in this frame
|
||||||
|
uint16_t fsize; // frame size (includes this header)
|
||||||
|
} frame_header;
|
||||||
|
|
||||||
|
struct {
|
||||||
|
int16_t history[4]; // most recent last
|
||||||
|
int16_t weights[4]; // most recent last
|
||||||
|
} lms_state[num_channels];
|
||||||
|
|
||||||
|
qoa_slice_t slices[256][num_channels];
|
||||||
|
|
||||||
|
} frames[ceil(samples / (256 * 20))];
|
||||||
|
} qoa_file_t;
|
||||||
|
|
||||||
|
Each `qoa_slice_t` contains a quantized scalefactor `sf_quant` and 20 quantized
|
||||||
|
residuals `qrNN`:
|
||||||
|
|
||||||
|
.- QOA_SLICE -- 64 bits, 20 samples --------------------------/ /------------.
|
||||||
|
| Byte[0] | Byte[1] | Byte[2] \ \ Byte[7] |
|
||||||
|
| 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 | 7 6 5 / / 2 1 0 |
|
||||||
|
|------------+--------+--------+--------+---------+---------+-\ \--+---------|
|
||||||
|
| sf_quant | qr00 | qr01 | qr02 | qr03 | qr04 | / / | qr19 |
|
||||||
|
`-------------------------------------------------------------\ \------------`
|
||||||
|
|
||||||
|
Each frame except the last must contain exactly 256 slices per channel. The last
|
||||||
|
frame may contain between 1 .. 256 (inclusive) slices per channel. The last
|
||||||
|
slice (for each channel) in the last frame may contain less than 20 samples; the
|
||||||
|
slice still must be 8 bytes wide, with the unused samples zeroed out.
|
||||||
|
|
||||||
|
Channels are interleaved per slice. E.g. for 2 channel stereo:
|
||||||
|
slice[0] = L, slice[1] = R, slice[2] = L, slice[3] = R ...
|
||||||
|
|
||||||
|
A valid QOA file or stream must have at least one frame. Each frame must contain
|
||||||
|
at least one channel and one sample with a samplerate between 1 .. 16777215
|
||||||
|
(inclusive).
|
||||||
|
|
||||||
|
If the total number of samples is not known by the encoder, the samples in the
|
||||||
|
file header may be set to 0x00000000 to indicate that the encoder is
|
||||||
|
"streaming". In a streaming context, the samplerate and number of channels may
|
||||||
|
differ from frame to frame. For static files (those with samples set to a
|
||||||
|
non-zero value), each frame must have the same number of channels and same
|
||||||
|
samplerate.
|
||||||
|
|
||||||
|
Note that this implementation of QOA only handles files with a known total
|
||||||
|
number of samples.
|
||||||
|
|
||||||
|
A decoder should support at least 8 channels. The channel layout for channel
|
||||||
|
counts 1 .. 8 is:
|
||||||
|
|
||||||
|
1. Mono
|
||||||
|
2. L, R
|
||||||
|
3. L, R, C
|
||||||
|
4. FL, FR, B/SL, B/SR
|
||||||
|
5. FL, FR, C, B/SL, B/SR
|
||||||
|
6. FL, FR, C, LFE, B/SL, B/SR
|
||||||
|
7. FL, FR, C, LFE, B, SL, SR
|
||||||
|
8. FL, FR, C, LFE, BL, BR, SL, SR
|
||||||
|
|
||||||
|
QOA predicts each audio sample based on the previously decoded ones using a
|
||||||
|
"Sign-Sign Least Mean Squares Filter" (LMS). This prediction plus the
|
||||||
|
dequantized residual forms the final output sample.
|
||||||
|
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/* -----------------------------------------------------------------------------
|
||||||
|
Header - Public functions */
|
||||||
|
|
||||||
|
#ifndef QOA_H
|
||||||
|
#define QOA_H
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
extern "C" {
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define QOA_MIN_FILESIZE 16
|
||||||
|
#define QOA_MAX_CHANNELS 8
|
||||||
|
|
||||||
|
#define QOA_SLICE_LEN 20
|
||||||
|
#define QOA_SLICES_PER_FRAME 256
|
||||||
|
#define QOA_FRAME_LEN (QOA_SLICES_PER_FRAME * QOA_SLICE_LEN)
|
||||||
|
#define QOA_LMS_LEN 4
|
||||||
|
#define QOA_MAGIC 0x716f6166 /* 'qoaf' */
|
||||||
|
|
||||||
|
#define QOA_FRAME_SIZE(channels, slices) \
|
||||||
|
(8 + QOA_LMS_LEN * 4 * channels + 8 * slices * channels)
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
int history[QOA_LMS_LEN];
|
||||||
|
int weights[QOA_LMS_LEN];
|
||||||
|
} qoa_lms_t;
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
unsigned int channels;
|
||||||
|
unsigned int samplerate;
|
||||||
|
unsigned int samples;
|
||||||
|
qoa_lms_t lms[QOA_MAX_CHANNELS];
|
||||||
|
#ifdef QOA_RECORD_TOTAL_ERROR
|
||||||
|
double error;
|
||||||
|
#endif
|
||||||
|
} qoa_desc;
|
||||||
|
|
||||||
|
unsigned int qoa_encode_header(qoa_desc *qoa, unsigned char *bytes);
|
||||||
|
unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned int frame_len, unsigned char *bytes);
|
||||||
|
void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len);
|
||||||
|
|
||||||
|
unsigned int qoa_max_frame_size(qoa_desc *qoa);
|
||||||
|
unsigned int qoa_decode_header(const unsigned char *bytes, int size, qoa_desc *qoa);
|
||||||
|
unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa_desc *qoa, short *sample_data, unsigned int *frame_len);
|
||||||
|
short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *file);
|
||||||
|
|
||||||
|
#ifndef QOA_NO_STDIO
|
||||||
|
|
||||||
|
int qoa_write(const char *filename, const short *sample_data, qoa_desc *qoa);
|
||||||
|
void *qoa_read(const char *filename, qoa_desc *qoa);
|
||||||
|
|
||||||
|
#endif /* QOA_NO_STDIO */
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
#endif /* QOA_H */
|
||||||
|
|
||||||
|
|
||||||
|
/* -----------------------------------------------------------------------------
|
||||||
|
Implementation */
|
||||||
|
|
||||||
|
#ifdef QOA_IMPLEMENTATION
|
||||||
|
#include <stdlib.h>
|
||||||
|
|
||||||
|
#ifndef QOA_MALLOC
|
||||||
|
#define QOA_MALLOC(sz) malloc(sz)
|
||||||
|
#define QOA_FREE(p) free(p)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
typedef unsigned long long qoa_uint64_t;
|
||||||
|
|
||||||
|
|
||||||
|
/* The quant_tab provides an index into the dequant_tab for residuals in the
|
||||||
|
range of -8 .. 8. It maps this range to just 3bits and becomes less accurate at
|
||||||
|
the higher end. Note that the residual zero is identical to the lowest positive
|
||||||
|
value. This is mostly fine, since the qoa_div() function always rounds away
|
||||||
|
from zero. */
|
||||||
|
|
||||||
|
static const int qoa_quant_tab[17] = {
|
||||||
|
7, 7, 7, 5, 5, 3, 3, 1, /* -8..-1 */
|
||||||
|
0, /* 0 */
|
||||||
|
0, 2, 2, 4, 4, 6, 6, 6 /* 1.. 8 */
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/* We have 16 different scalefactors. Like the quantized residuals these become
|
||||||
|
less accurate at the higher end. In theory, the highest scalefactor that we
|
||||||
|
would need to encode the highest 16bit residual is (2**16)/8 = 8192. However we
|
||||||
|
rely on the LMS filter to predict samples accurately enough that a maximum
|
||||||
|
residual of one quarter of the 16 bit range is sufficient. I.e. with the
|
||||||
|
scalefactor 2048 times the quant range of 8 we can encode residuals up to 2**14.
|
||||||
|
|
||||||
|
The scalefactor values are computed as:
|
||||||
|
scalefactor_tab[s] <- round(pow(s + 1, 2.75)) */
|
||||||
|
|
||||||
|
static const int qoa_scalefactor_tab[16] = {
|
||||||
|
1, 7, 21, 45, 84, 138, 211, 304, 421, 562, 731, 928, 1157, 1419, 1715, 2048
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/* The reciprocal_tab maps each of the 16 scalefactors to their rounded
|
||||||
|
reciprocals 1/scalefactor. This allows us to calculate the scaled residuals in
|
||||||
|
the encoder with just one multiplication instead of an expensive division. We
|
||||||
|
do this in .16 fixed point with integers, instead of floats.
|
||||||
|
|
||||||
|
The reciprocal_tab is computed as:
|
||||||
|
reciprocal_tab[s] <- ((1<<16) + scalefactor_tab[s] - 1) / scalefactor_tab[s] */
|
||||||
|
|
||||||
|
static const int qoa_reciprocal_tab[16] = {
|
||||||
|
65536, 9363, 3121, 1457, 781, 475, 311, 216, 156, 117, 90, 71, 57, 47, 39, 32
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/* The dequant_tab maps each of the scalefactors and quantized residuals to
|
||||||
|
their unscaled & dequantized version.
|
||||||
|
|
||||||
|
Since qoa_div rounds away from the zero, the smallest entries are mapped to 3/4
|
||||||
|
instead of 1. The dequant_tab assumes the following dequantized values for each
|
||||||
|
of the quant_tab indices and is computed as:
|
||||||
|
float dqt[8] = {0.75, -0.75, 2.5, -2.5, 4.5, -4.5, 7, -7};
|
||||||
|
dequant_tab[s][q] <- round_ties_away_from_zero(scalefactor_tab[s] * dqt[q])
|
||||||
|
|
||||||
|
The rounding employed here is "to nearest, ties away from zero", i.e. positive
|
||||||
|
and negative values are treated symmetrically.
|
||||||
|
*/
|
||||||
|
|
||||||
|
static const int qoa_dequant_tab[16][8] = {
|
||||||
|
{ 1, -1, 3, -3, 5, -5, 7, -7},
|
||||||
|
{ 5, -5, 18, -18, 32, -32, 49, -49},
|
||||||
|
{ 16, -16, 53, -53, 95, -95, 147, -147},
|
||||||
|
{ 34, -34, 113, -113, 203, -203, 315, -315},
|
||||||
|
{ 63, -63, 210, -210, 378, -378, 588, -588},
|
||||||
|
{ 104, -104, 345, -345, 621, -621, 966, -966},
|
||||||
|
{ 158, -158, 528, -528, 950, -950, 1477, -1477},
|
||||||
|
{ 228, -228, 760, -760, 1368, -1368, 2128, -2128},
|
||||||
|
{ 316, -316, 1053, -1053, 1895, -1895, 2947, -2947},
|
||||||
|
{ 422, -422, 1405, -1405, 2529, -2529, 3934, -3934},
|
||||||
|
{ 548, -548, 1828, -1828, 3290, -3290, 5117, -5117},
|
||||||
|
{ 696, -696, 2320, -2320, 4176, -4176, 6496, -6496},
|
||||||
|
{ 868, -868, 2893, -2893, 5207, -5207, 8099, -8099},
|
||||||
|
{1064, -1064, 3548, -3548, 6386, -6386, 9933, -9933},
|
||||||
|
{1286, -1286, 4288, -4288, 7718, -7718, 12005, -12005},
|
||||||
|
{1536, -1536, 5120, -5120, 9216, -9216, 14336, -14336},
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/* The Least Mean Squares Filter is the heart of QOA. It predicts the next
|
||||||
|
sample based on the previous 4 reconstructed samples. It does so by continuously
|
||||||
|
adjusting 4 weights based on the residual of the previous prediction.
|
||||||
|
|
||||||
|
The next sample is predicted as the sum of (weight[i] * history[i]).
|
||||||
|
|
||||||
|
The adjustment of the weights is done with a "Sign-Sign-LMS" that adds or
|
||||||
|
subtracts the residual to each weight, based on the corresponding sample from
|
||||||
|
the history. This, surprisingly, is sufficient to get worthwhile predictions.
|
||||||
|
|
||||||
|
This is all done with fixed point integers. Hence the right-shifts when updating
|
||||||
|
the weights and calculating the prediction. */
|
||||||
|
|
||||||
|
static int qoa_lms_predict(qoa_lms_t *lms) {
|
||||||
|
int prediction = 0;
|
||||||
|
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||||||
|
prediction += lms->weights[i] * lms->history[i];
|
||||||
|
}
|
||||||
|
return prediction >> 13;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void qoa_lms_update(qoa_lms_t *lms, int sample, int residual) {
|
||||||
|
int delta = residual >> 4;
|
||||||
|
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||||||
|
lms->weights[i] += lms->history[i] < 0 ? -delta : delta;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < QOA_LMS_LEN-1; i++) {
|
||||||
|
lms->history[i] = lms->history[i+1];
|
||||||
|
}
|
||||||
|
lms->history[QOA_LMS_LEN-1] = sample;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* qoa_div() implements a rounding division, but avoids rounding to zero for
|
||||||
|
small numbers. E.g. 0.1 will be rounded to 1. Note that 0 itself still
|
||||||
|
returns as 0, which is handled in the qoa_quant_tab[].
|
||||||
|
qoa_div() takes an index into the .16 fixed point qoa_reciprocal_tab as an
|
||||||
|
argument, so it can do the division with a cheaper integer multiplication. */
|
||||||
|
|
||||||
|
static inline int qoa_div(int v, int scalefactor) {
|
||||||
|
int reciprocal = qoa_reciprocal_tab[scalefactor];
|
||||||
|
int n = (v * reciprocal + (1 << 15)) >> 16;
|
||||||
|
n = n + ((v > 0) - (v < 0)) - ((n > 0) - (n < 0)); /* round away from 0 */
|
||||||
|
return n;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline int qoa_clamp(int v, int min, int max) {
|
||||||
|
if (v < min) { return min; }
|
||||||
|
if (v > max) { return max; }
|
||||||
|
return v;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* This specialized clamp function for the signed 16 bit range improves decode
|
||||||
|
performance quite a bit. The extra if() statement works nicely with the CPUs
|
||||||
|
branch prediction as this branch is rarely taken. */
|
||||||
|
|
||||||
|
static inline int qoa_clamp_s16(int v) {
|
||||||
|
if ((unsigned int)(v + 32768) > 65535) {
|
||||||
|
if (v < -32768) { return -32768; }
|
||||||
|
if (v > 32767) { return 32767; }
|
||||||
|
}
|
||||||
|
return v;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline qoa_uint64_t qoa_read_u64(const unsigned char *bytes, unsigned int *p) {
|
||||||
|
bytes += *p;
|
||||||
|
*p += 8;
|
||||||
|
return
|
||||||
|
((qoa_uint64_t)(bytes[0]) << 56) | ((qoa_uint64_t)(bytes[1]) << 48) |
|
||||||
|
((qoa_uint64_t)(bytes[2]) << 40) | ((qoa_uint64_t)(bytes[3]) << 32) |
|
||||||
|
((qoa_uint64_t)(bytes[4]) << 24) | ((qoa_uint64_t)(bytes[5]) << 16) |
|
||||||
|
((qoa_uint64_t)(bytes[6]) << 8) | ((qoa_uint64_t)(bytes[7]) << 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline void qoa_write_u64(qoa_uint64_t v, unsigned char *bytes, unsigned int *p) {
|
||||||
|
bytes += *p;
|
||||||
|
*p += 8;
|
||||||
|
bytes[0] = (v >> 56) & 0xff;
|
||||||
|
bytes[1] = (v >> 48) & 0xff;
|
||||||
|
bytes[2] = (v >> 40) & 0xff;
|
||||||
|
bytes[3] = (v >> 32) & 0xff;
|
||||||
|
bytes[4] = (v >> 24) & 0xff;
|
||||||
|
bytes[5] = (v >> 16) & 0xff;
|
||||||
|
bytes[6] = (v >> 8) & 0xff;
|
||||||
|
bytes[7] = (v >> 0) & 0xff;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* -----------------------------------------------------------------------------
|
||||||
|
Encoder */
|
||||||
|
|
||||||
|
unsigned int qoa_encode_header(qoa_desc *qoa, unsigned char *bytes) {
|
||||||
|
unsigned int p = 0;
|
||||||
|
qoa_write_u64(((qoa_uint64_t)QOA_MAGIC << 32) | qoa->samples, bytes, &p);
|
||||||
|
return p;
|
||||||
|
}
|
||||||
|
|
||||||
|
unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned int frame_len, unsigned char *bytes) {
|
||||||
|
unsigned int channels = qoa->channels;
|
||||||
|
|
||||||
|
unsigned int p = 0;
|
||||||
|
unsigned int slices = (frame_len + QOA_SLICE_LEN - 1) / QOA_SLICE_LEN;
|
||||||
|
unsigned int frame_size = QOA_FRAME_SIZE(channels, slices);
|
||||||
|
int prev_scalefactor[QOA_MAX_CHANNELS] = {0};
|
||||||
|
|
||||||
|
/* Write the frame header */
|
||||||
|
qoa_write_u64((
|
||||||
|
(qoa_uint64_t)qoa->channels << 56 |
|
||||||
|
(qoa_uint64_t)qoa->samplerate << 32 |
|
||||||
|
(qoa_uint64_t)frame_len << 16 |
|
||||||
|
(qoa_uint64_t)frame_size
|
||||||
|
), bytes, &p);
|
||||||
|
|
||||||
|
|
||||||
|
for (unsigned int c = 0; c < channels; c++) {
|
||||||
|
/* Write the current LMS state */
|
||||||
|
qoa_uint64_t weights = 0;
|
||||||
|
qoa_uint64_t history = 0;
|
||||||
|
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||||||
|
history = (history << 16) | (qoa->lms[c].history[i] & 0xffff);
|
||||||
|
weights = (weights << 16) | (qoa->lms[c].weights[i] & 0xffff);
|
||||||
|
}
|
||||||
|
qoa_write_u64(history, bytes, &p);
|
||||||
|
qoa_write_u64(weights, bytes, &p);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* We encode all samples with the channels interleaved on a slice level.
|
||||||
|
E.g. for stereo: (ch-0, slice 0), (ch 1, slice 0), (ch 0, slice 1), ...*/
|
||||||
|
for (unsigned int sample_index = 0; sample_index < frame_len; sample_index += QOA_SLICE_LEN) {
|
||||||
|
|
||||||
|
for (unsigned int c = 0; c < channels; c++) {
|
||||||
|
int slice_len = qoa_clamp(QOA_SLICE_LEN, 0, frame_len - sample_index);
|
||||||
|
int slice_start = sample_index * channels + c;
|
||||||
|
int slice_end = (sample_index + slice_len) * channels + c;
|
||||||
|
|
||||||
|
/* Brute for search for the best scalefactor. Just go through all
|
||||||
|
16 scalefactors, encode all samples for the current slice and
|
||||||
|
meassure the total squared error. */
|
||||||
|
qoa_uint64_t best_rank = -1;
|
||||||
|
#ifdef QOA_RECORD_TOTAL_ERROR
|
||||||
|
qoa_uint64_t best_error = -1;
|
||||||
|
#endif
|
||||||
|
qoa_uint64_t best_slice = 0;
|
||||||
|
qoa_lms_t best_lms;
|
||||||
|
int best_scalefactor = 0;
|
||||||
|
|
||||||
|
for (int sfi = 0; sfi < 16; sfi++) {
|
||||||
|
/* There is a strong correlation between the scalefactors of
|
||||||
|
neighboring slices. As an optimization, start testing
|
||||||
|
the best scalefactor of the previous slice first. */
|
||||||
|
int scalefactor = (sfi + prev_scalefactor[c]) % 16;
|
||||||
|
|
||||||
|
/* We have to reset the LMS state to the last known good one
|
||||||
|
before trying each scalefactor, as each pass updates the LMS
|
||||||
|
state when encoding. */
|
||||||
|
qoa_lms_t lms = qoa->lms[c];
|
||||||
|
qoa_uint64_t slice = scalefactor;
|
||||||
|
qoa_uint64_t current_rank = 0;
|
||||||
|
#ifdef QOA_RECORD_TOTAL_ERROR
|
||||||
|
qoa_uint64_t current_error = 0;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
for (int si = slice_start; si < slice_end; si += channels) {
|
||||||
|
int sample = sample_data[si];
|
||||||
|
int predicted = qoa_lms_predict(&lms);
|
||||||
|
|
||||||
|
int residual = sample - predicted;
|
||||||
|
int scaled = qoa_div(residual, scalefactor);
|
||||||
|
int clamped = qoa_clamp(scaled, -8, 8);
|
||||||
|
int quantized = qoa_quant_tab[clamped + 8];
|
||||||
|
int dequantized = qoa_dequant_tab[scalefactor][quantized];
|
||||||
|
int reconstructed = qoa_clamp_s16(predicted + dequantized);
|
||||||
|
|
||||||
|
|
||||||
|
/* If the weights have grown too large, we introduce a penalty
|
||||||
|
here. This prevents pops/clicks in certain problem cases */
|
||||||
|
int weights_penalty = ((
|
||||||
|
lms.weights[0] * lms.weights[0] +
|
||||||
|
lms.weights[1] * lms.weights[1] +
|
||||||
|
lms.weights[2] * lms.weights[2] +
|
||||||
|
lms.weights[3] * lms.weights[3]
|
||||||
|
) >> 18) - 0x8ff;
|
||||||
|
if (weights_penalty < 0) {
|
||||||
|
weights_penalty = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
long long error = (sample - reconstructed);
|
||||||
|
qoa_uint64_t error_sq = error * error;
|
||||||
|
|
||||||
|
current_rank += error_sq + weights_penalty * weights_penalty;
|
||||||
|
#ifdef QOA_RECORD_TOTAL_ERROR
|
||||||
|
current_error += error_sq;
|
||||||
|
#endif
|
||||||
|
if (current_rank > best_rank) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
qoa_lms_update(&lms, reconstructed, dequantized);
|
||||||
|
slice = (slice << 3) | quantized;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (current_rank < best_rank) {
|
||||||
|
best_rank = current_rank;
|
||||||
|
#ifdef QOA_RECORD_TOTAL_ERROR
|
||||||
|
best_error = current_error;
|
||||||
|
#endif
|
||||||
|
best_slice = slice;
|
||||||
|
best_lms = lms;
|
||||||
|
best_scalefactor = scalefactor;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
prev_scalefactor[c] = best_scalefactor;
|
||||||
|
|
||||||
|
qoa->lms[c] = best_lms;
|
||||||
|
#ifdef QOA_RECORD_TOTAL_ERROR
|
||||||
|
qoa->error += best_error;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* If this slice was shorter than QOA_SLICE_LEN, we have to left-
|
||||||
|
shift all encoded data, to ensure the rightmost bits are the empty
|
||||||
|
ones. This should only happen in the last frame of a file as all
|
||||||
|
slices are completely filled otherwise. */
|
||||||
|
best_slice <<= (QOA_SLICE_LEN - slice_len) * 3;
|
||||||
|
qoa_write_u64(best_slice, bytes, &p);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return p;
|
||||||
|
}
|
||||||
|
|
||||||
|
void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len) {
|
||||||
|
if (
|
||||||
|
qoa->samples == 0 ||
|
||||||
|
qoa->samplerate == 0 || qoa->samplerate > 0xffffff ||
|
||||||
|
qoa->channels == 0 || qoa->channels > QOA_MAX_CHANNELS
|
||||||
|
) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Calculate the encoded size and allocate */
|
||||||
|
unsigned int num_frames = (qoa->samples + QOA_FRAME_LEN-1) / QOA_FRAME_LEN;
|
||||||
|
unsigned int num_slices = (qoa->samples + QOA_SLICE_LEN-1) / QOA_SLICE_LEN;
|
||||||
|
unsigned int encoded_size = 8 + /* 8 byte file header */
|
||||||
|
num_frames * 8 + /* 8 byte frame headers */
|
||||||
|
num_frames * QOA_LMS_LEN * 4 * qoa->channels + /* 4 * 4 bytes lms state per channel */
|
||||||
|
num_slices * 8 * qoa->channels; /* 8 byte slices */
|
||||||
|
|
||||||
|
unsigned char *bytes = QOA_MALLOC(encoded_size);
|
||||||
|
|
||||||
|
for (unsigned int c = 0; c < qoa->channels; c++) {
|
||||||
|
/* Set the initial LMS weights to {0, 0, -1, 2}. This helps with the
|
||||||
|
prediction of the first few ms of a file. */
|
||||||
|
qoa->lms[c].weights[0] = 0;
|
||||||
|
qoa->lms[c].weights[1] = 0;
|
||||||
|
qoa->lms[c].weights[2] = -(1<<13);
|
||||||
|
qoa->lms[c].weights[3] = (1<<14);
|
||||||
|
|
||||||
|
/* Explicitly set the history samples to 0, as we might have some
|
||||||
|
garbage in there. */
|
||||||
|
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||||||
|
qoa->lms[c].history[i] = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Encode the header and go through all frames */
|
||||||
|
unsigned int p = qoa_encode_header(qoa, bytes);
|
||||||
|
#ifdef QOA_RECORD_TOTAL_ERROR
|
||||||
|
qoa->error = 0;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
int frame_len = QOA_FRAME_LEN;
|
||||||
|
for (unsigned int sample_index = 0; sample_index < qoa->samples; sample_index += frame_len) {
|
||||||
|
frame_len = qoa_clamp(QOA_FRAME_LEN, 0, qoa->samples - sample_index);
|
||||||
|
const short *frame_samples = sample_data + sample_index * qoa->channels;
|
||||||
|
unsigned int frame_size = qoa_encode_frame(frame_samples, qoa, frame_len, bytes + p);
|
||||||
|
p += frame_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
*out_len = p;
|
||||||
|
return bytes;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/* -----------------------------------------------------------------------------
|
||||||
|
Decoder */
|
||||||
|
|
||||||
|
unsigned int qoa_max_frame_size(qoa_desc *qoa) {
|
||||||
|
return QOA_FRAME_SIZE(qoa->channels, QOA_SLICES_PER_FRAME);
|
||||||
|
}
|
||||||
|
|
||||||
|
unsigned int qoa_decode_header(const unsigned char *bytes, int size, qoa_desc *qoa) {
|
||||||
|
unsigned int p = 0;
|
||||||
|
if (size < QOA_MIN_FILESIZE) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Read the file header, verify the magic number ('qoaf') and read the
|
||||||
|
total number of samples. */
|
||||||
|
qoa_uint64_t file_header = qoa_read_u64(bytes, &p);
|
||||||
|
|
||||||
|
if ((file_header >> 32) != QOA_MAGIC) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
qoa->samples = file_header & 0xffffffff;
|
||||||
|
if (!qoa->samples) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Peek into the first frame header to get the number of channels and
|
||||||
|
the samplerate. */
|
||||||
|
qoa_uint64_t frame_header = qoa_read_u64(bytes, &p);
|
||||||
|
qoa->channels = (frame_header >> 56) & 0x0000ff;
|
||||||
|
qoa->samplerate = (frame_header >> 32) & 0xffffff;
|
||||||
|
|
||||||
|
if (qoa->channels == 0 || qoa->samples == 0 || qoa->samplerate == 0) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
return 8;
|
||||||
|
}
|
||||||
|
|
||||||
|
unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa_desc *qoa, short *sample_data, unsigned int *frame_len) {
|
||||||
|
unsigned int p = 0;
|
||||||
|
*frame_len = 0;
|
||||||
|
|
||||||
|
if (size < 8 + QOA_LMS_LEN * 4 * qoa->channels) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Read and verify the frame header */
|
||||||
|
qoa_uint64_t frame_header = qoa_read_u64(bytes, &p);
|
||||||
|
unsigned int channels = (frame_header >> 56) & 0x0000ff;
|
||||||
|
unsigned int samplerate = (frame_header >> 32) & 0xffffff;
|
||||||
|
unsigned int samples = (frame_header >> 16) & 0x00ffff;
|
||||||
|
unsigned int frame_size = (frame_header ) & 0x00ffff;
|
||||||
|
|
||||||
|
unsigned int data_size = frame_size - 8 - QOA_LMS_LEN * 4 * channels;
|
||||||
|
unsigned int num_slices = data_size / 8;
|
||||||
|
unsigned int max_total_samples = num_slices * QOA_SLICE_LEN;
|
||||||
|
|
||||||
|
if (
|
||||||
|
channels != qoa->channels ||
|
||||||
|
samplerate != qoa->samplerate ||
|
||||||
|
frame_size > size ||
|
||||||
|
samples * channels > max_total_samples
|
||||||
|
) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Read the LMS state: 4 x 2 bytes history, 4 x 2 bytes weights per channel */
|
||||||
|
for (unsigned int c = 0; c < channels; c++) {
|
||||||
|
qoa_uint64_t history = qoa_read_u64(bytes, &p);
|
||||||
|
qoa_uint64_t weights = qoa_read_u64(bytes, &p);
|
||||||
|
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||||||
|
qoa->lms[c].history[i] = ((signed short)(history >> 48));
|
||||||
|
history <<= 16;
|
||||||
|
qoa->lms[c].weights[i] = ((signed short)(weights >> 48));
|
||||||
|
weights <<= 16;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Decode all slices for all channels in this frame */
|
||||||
|
for (unsigned int sample_index = 0; sample_index < samples; sample_index += QOA_SLICE_LEN) {
|
||||||
|
for (unsigned int c = 0; c < channels; c++) {
|
||||||
|
qoa_uint64_t slice = qoa_read_u64(bytes, &p);
|
||||||
|
|
||||||
|
int scalefactor = (slice >> 60) & 0xf;
|
||||||
|
slice <<= 4;
|
||||||
|
|
||||||
|
int slice_start = sample_index * channels + c;
|
||||||
|
int slice_end = qoa_clamp(sample_index + QOA_SLICE_LEN, 0, samples) * channels + c;
|
||||||
|
|
||||||
|
for (int si = slice_start; si < slice_end; si += channels) {
|
||||||
|
int predicted = qoa_lms_predict(&qoa->lms[c]);
|
||||||
|
int quantized = (slice >> 61) & 0x7;
|
||||||
|
int dequantized = qoa_dequant_tab[scalefactor][quantized];
|
||||||
|
int reconstructed = qoa_clamp_s16(predicted + dequantized);
|
||||||
|
|
||||||
|
sample_data[si] = reconstructed;
|
||||||
|
slice <<= 3;
|
||||||
|
|
||||||
|
qoa_lms_update(&qoa->lms[c], reconstructed, dequantized);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
*frame_len = samples;
|
||||||
|
return p;
|
||||||
|
}
|
||||||
|
|
||||||
|
short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *qoa) {
|
||||||
|
unsigned int p = qoa_decode_header(bytes, size, qoa);
|
||||||
|
if (!p) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Calculate the required size of the sample buffer and allocate */
|
||||||
|
int total_samples = qoa->samples * qoa->channels;
|
||||||
|
short *sample_data = QOA_MALLOC(total_samples * sizeof(short));
|
||||||
|
|
||||||
|
unsigned int sample_index = 0;
|
||||||
|
unsigned int frame_len;
|
||||||
|
unsigned int frame_size;
|
||||||
|
|
||||||
|
/* Decode all frames */
|
||||||
|
do {
|
||||||
|
short *sample_ptr = sample_data + sample_index * qoa->channels;
|
||||||
|
frame_size = qoa_decode_frame(bytes + p, size - p, qoa, sample_ptr, &frame_len);
|
||||||
|
|
||||||
|
p += frame_size;
|
||||||
|
sample_index += frame_len;
|
||||||
|
} while (frame_size && sample_index < qoa->samples);
|
||||||
|
|
||||||
|
qoa->samples = sample_index;
|
||||||
|
return sample_data;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/* -----------------------------------------------------------------------------
|
||||||
|
File read/write convenience functions */
|
||||||
|
|
||||||
|
#ifndef QOA_NO_STDIO
|
||||||
|
#include <stdio.h>
|
||||||
|
|
||||||
|
int qoa_write(const char *filename, const short *sample_data, qoa_desc *qoa) {
|
||||||
|
FILE *f = fopen(filename, "wb");
|
||||||
|
unsigned int size;
|
||||||
|
void *encoded;
|
||||||
|
|
||||||
|
if (!f) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
encoded = qoa_encode(sample_data, qoa, &size);
|
||||||
|
if (!encoded) {
|
||||||
|
fclose(f);
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
fwrite(encoded, 1, size, f);
|
||||||
|
fclose(f);
|
||||||
|
|
||||||
|
QOA_FREE(encoded);
|
||||||
|
return size;
|
||||||
|
}
|
||||||
|
|
||||||
|
void *qoa_read(const char *filename, qoa_desc *qoa) {
|
||||||
|
FILE *f = fopen(filename, "rb");
|
||||||
|
int size, bytes_read;
|
||||||
|
void *data;
|
||||||
|
short *sample_data;
|
||||||
|
|
||||||
|
if (!f) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
fseek(f, 0, SEEK_END);
|
||||||
|
size = ftell(f);
|
||||||
|
if (size <= 0) {
|
||||||
|
fclose(f);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
fseek(f, 0, SEEK_SET);
|
||||||
|
|
||||||
|
data = QOA_MALLOC(size);
|
||||||
|
if (!data) {
|
||||||
|
fclose(f);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
bytes_read = fread(data, 1, size, f);
|
||||||
|
fclose(f);
|
||||||
|
|
||||||
|
sample_data = qoa_decode(data, bytes_read, qoa);
|
||||||
|
QOA_FREE(data);
|
||||||
|
return sample_data;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* QOA_NO_STDIO */
|
||||||
|
#endif /* QOA_IMPLEMENTATION */
|
||||||
254
soundwave.cm
Normal file
254
soundwave.cm
Normal file
@@ -0,0 +1,254 @@
|
|||||||
|
/*
|
||||||
|
* soundwave.cm - Standalone audio playback system
|
||||||
|
*
|
||||||
|
* Creates an audio player instance that manages voices and provides
|
||||||
|
* mixed audio output. Platform-agnostic - caller is responsible for
|
||||||
|
* feeding the output to the audio device.
|
||||||
|
*
|
||||||
|
* USAGE:
|
||||||
|
* var soundwave = use('soundwave/soundwave')
|
||||||
|
* var player = soundwave.create({
|
||||||
|
* sample_rate: 44100,
|
||||||
|
* channels: 2,
|
||||||
|
* frames_per_chunk: 1024
|
||||||
|
* })
|
||||||
|
*
|
||||||
|
* // Load and decode audio (caller provides bytes and file path)
|
||||||
|
* var pcm = player.decode(bytes, "mysound.mp3")
|
||||||
|
*
|
||||||
|
* // Play a sound
|
||||||
|
* var voice = player.play(pcm, { loop: true, vol: 0.5 })
|
||||||
|
* voice.stopped = true // stop it
|
||||||
|
*
|
||||||
|
* // Pull mixed audio frames for output
|
||||||
|
* var blob = player.pull(1024) // returns stoned blob of f32 stereo samples
|
||||||
|
*
|
||||||
|
* OBJECTS:
|
||||||
|
*
|
||||||
|
* Player - Audio player instance
|
||||||
|
* .sample_rate - output sample rate (default 44100)
|
||||||
|
* .channels - output channels (default 2)
|
||||||
|
* .frames_per_chunk- default frames per pull (default 1024)
|
||||||
|
* .decode(bytes, path) - decode audio bytes, returns PCM object
|
||||||
|
* .play(pcm, opts) - play a PCM, returns Voice object
|
||||||
|
* .pull(frames) - pull mixed audio, returns stoned blob
|
||||||
|
* .cleanup() - remove finished voices
|
||||||
|
*
|
||||||
|
* PCM - Decoded audio data
|
||||||
|
* .pcm - stoned blob of f32 stereo samples at player's sample_rate
|
||||||
|
* .channels - channel count (after conversion)
|
||||||
|
* .sample_rate- sample rate (after conversion)
|
||||||
|
* .frames - total frames in pcm blob
|
||||||
|
* .path - source file path
|
||||||
|
*
|
||||||
|
* Voice - A playing instance of a PCM
|
||||||
|
* .source - reference to PCM object
|
||||||
|
* .pos - current frame position (0-indexed)
|
||||||
|
* .vol - volume 0.0-1.0 (default 1.0)
|
||||||
|
* .loop - if true, loops when reaching end
|
||||||
|
* .stopped - set to true to stop playback
|
||||||
|
* .finish_hook- optional callback when voice finishes
|
||||||
|
*/
|
||||||
|
|
||||||
|
var wav = use('soundwave/wav')
|
||||||
|
var mp3 = use('soundwave/mp3')
|
||||||
|
var flac = use('soundwave/flac')
|
||||||
|
var dsp = use('soundwave/dsp')
|
||||||
|
var samplerate = use('libsamplerate/convert')
|
||||||
|
var Blob = use('blob')
|
||||||
|
|
||||||
|
var soundwave = {}
|
||||||
|
|
||||||
|
// Create a new audio player instance
|
||||||
|
soundwave.create = function(opts) {
|
||||||
|
opts = opts || {}
|
||||||
|
|
||||||
|
var player = {
|
||||||
|
sample_rate: opts.sample_rate || 44100,
|
||||||
|
channels: opts.channels || 2,
|
||||||
|
frames_per_chunk: opts.frames_per_chunk || 1024,
|
||||||
|
voices: [],
|
||||||
|
pcm_cache: {}
|
||||||
|
}
|
||||||
|
|
||||||
|
var BYTES_PER_SAMPLE = 4 // f32
|
||||||
|
|
||||||
|
// Normalize decoded audio to player's output format
|
||||||
|
function normalize_pcm(decoded, path) {
|
||||||
|
var pcm = decoded.pcm
|
||||||
|
var channels = decoded.channels || 1
|
||||||
|
var rate = decoded.sample_rate || player.sample_rate
|
||||||
|
|
||||||
|
// Resample if needed
|
||||||
|
if (rate != player.sample_rate) {
|
||||||
|
pcm = samplerate.resample(pcm, rate, player.sample_rate, channels)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convert mono to stereo if needed
|
||||||
|
if (channels == 1 && player.channels == 2) {
|
||||||
|
pcm = dsp.mono_to_stereo(pcm)
|
||||||
|
channels = 2
|
||||||
|
}
|
||||||
|
|
||||||
|
// Calculate frames
|
||||||
|
var bytes = pcm.length / 8 // blob.length is in bits
|
||||||
|
var frames = bytes / (player.channels * BYTES_PER_SAMPLE)
|
||||||
|
|
||||||
|
return {
|
||||||
|
pcm: pcm,
|
||||||
|
channels: player.channels,
|
||||||
|
sample_rate: player.sample_rate,
|
||||||
|
frames: frames,
|
||||||
|
path: path
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Decode audio bytes into PCM
|
||||||
|
// bytes: blob of encoded audio data
|
||||||
|
// path: file path (used to determine format and for caching)
|
||||||
|
player.decode = function(bytes, path) {
|
||||||
|
if (!bytes || !path) return null
|
||||||
|
|
||||||
|
// Check cache
|
||||||
|
if (player.pcm_cache[path]) return player.pcm_cache[path]
|
||||||
|
|
||||||
|
var decoded = null
|
||||||
|
if (path.endsWith('.wav')) {
|
||||||
|
decoded = wav.decode(bytes)
|
||||||
|
} else if (path.endsWith('.mp3')) {
|
||||||
|
decoded = mp3.decode(bytes)
|
||||||
|
} else if (path.endsWith('.flac')) {
|
||||||
|
decoded = flac.decode(bytes)
|
||||||
|
}
|
||||||
|
|
||||||
|
if (decoded && decoded.pcm) {
|
||||||
|
var normalized = normalize_pcm(decoded, path)
|
||||||
|
player.pcm_cache[path] = normalized
|
||||||
|
return normalized
|
||||||
|
}
|
||||||
|
return null
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pull a chunk of audio from a voice, handling looping
|
||||||
|
function pull_voice_chunk(voice, frames) {
|
||||||
|
if (voice.stopped) return null
|
||||||
|
|
||||||
|
var source = voice.source
|
||||||
|
var total_frames = source.frames
|
||||||
|
var pos = voice.pos
|
||||||
|
var bytes_per_frame = player.channels * BYTES_PER_SAMPLE
|
||||||
|
var bits_per_frame = bytes_per_frame * 8
|
||||||
|
|
||||||
|
var out = new Blob()
|
||||||
|
var frames_written = 0
|
||||||
|
|
||||||
|
while (frames_written < frames) {
|
||||||
|
if (pos >= total_frames) {
|
||||||
|
if (voice.loop) {
|
||||||
|
pos = 0
|
||||||
|
} else {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
var frames_available = total_frames - pos
|
||||||
|
var frames_needed = frames - frames_written
|
||||||
|
var frames_to_read = frames_available < frames_needed ? frames_available : frames_needed
|
||||||
|
|
||||||
|
var start_bit = pos * bits_per_frame
|
||||||
|
var end_bit = (pos + frames_to_read) * bits_per_frame
|
||||||
|
var chunk = source.pcm.read_blob(start_bit, end_bit)
|
||||||
|
out.write_blob(chunk)
|
||||||
|
|
||||||
|
pos += frames_to_read
|
||||||
|
frames_written += frames_to_read
|
||||||
|
}
|
||||||
|
|
||||||
|
voice.pos = pos
|
||||||
|
|
||||||
|
// Pad with silence if needed
|
||||||
|
if (frames_written < frames) {
|
||||||
|
var silence_frames = frames - frames_written
|
||||||
|
var silence = dsp.silence(silence_frames, player.channels)
|
||||||
|
out.write_blob(silence)
|
||||||
|
}
|
||||||
|
|
||||||
|
stone(out)
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
// Remove finished voices
|
||||||
|
player.cleanup = function() {
|
||||||
|
var active = []
|
||||||
|
for (var i = 0; i < player.voices.length; i++) {
|
||||||
|
var v = player.voices[i]
|
||||||
|
var done = v.stopped || (!v.loop && v.pos >= v.source.frames)
|
||||||
|
if (!done) {
|
||||||
|
active.push(v)
|
||||||
|
} else if (v.finish_hook) {
|
||||||
|
v.finish_hook()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
player.voices = active
|
||||||
|
}
|
||||||
|
|
||||||
|
// Play a PCM, returns voice object
|
||||||
|
player.play = function(pcm, opts) {
|
||||||
|
if (!pcm) return null
|
||||||
|
|
||||||
|
var voice = {
|
||||||
|
source: pcm,
|
||||||
|
pos: 0,
|
||||||
|
vol: 1.0,
|
||||||
|
loop: false,
|
||||||
|
stopped: false,
|
||||||
|
finish_hook: null
|
||||||
|
}
|
||||||
|
|
||||||
|
if (opts) {
|
||||||
|
if (opts.loop != null) voice.loop = opts.loop
|
||||||
|
if (opts.vol != null) voice.vol = opts.vol
|
||||||
|
}
|
||||||
|
|
||||||
|
player.voices.push(voice)
|
||||||
|
return voice
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pull mixed audio frames
|
||||||
|
// Returns a stoned blob of f32 samples (channels * frames * 4 bytes)
|
||||||
|
player.pull = function(frames) {
|
||||||
|
frames = frames || player.frames_per_chunk
|
||||||
|
|
||||||
|
var blobs = []
|
||||||
|
var vols = []
|
||||||
|
|
||||||
|
for (var i = 0; i < player.voices.length; i++) {
|
||||||
|
var v = player.voices[i]
|
||||||
|
if (v.stopped) continue
|
||||||
|
var chunk = pull_voice_chunk(v, frames)
|
||||||
|
if (chunk) {
|
||||||
|
blobs.push(chunk)
|
||||||
|
vols.push(v.vol)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
var mixed
|
||||||
|
if (blobs.length == 0) {
|
||||||
|
mixed = dsp.silence(frames, player.channels)
|
||||||
|
} else {
|
||||||
|
mixed = dsp.mix_blobs(blobs, vols)
|
||||||
|
}
|
||||||
|
|
||||||
|
player.cleanup()
|
||||||
|
return mixed
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convenience: get number of active voices
|
||||||
|
player.voice_count = function() {
|
||||||
|
return player.voices.length
|
||||||
|
}
|
||||||
|
|
||||||
|
return player
|
||||||
|
}
|
||||||
|
|
||||||
|
return soundwave
|
||||||
116
wav.c
Normal file
116
wav.c
Normal file
@@ -0,0 +1,116 @@
|
|||||||
|
#include "cell.h"
|
||||||
|
|
||||||
|
#include <stdlib.h>
|
||||||
|
|
||||||
|
#define DR_WAV_IMPLEMENTATION
|
||||||
|
#include "dr_wav.h"
|
||||||
|
|
||||||
|
static int wav_calc_size(drwav *wav, drwav_uint64 frames, size_t *out_bytes)
|
||||||
|
{
|
||||||
|
if (!wav || !out_bytes)
|
||||||
|
return -1;
|
||||||
|
|
||||||
|
size_t bytes_per_frame = drwav_get_bytes_per_pcm_frame(wav);
|
||||||
|
if (bytes_per_frame == 0)
|
||||||
|
return -1;
|
||||||
|
|
||||||
|
if (frames > SIZE_MAX / bytes_per_frame)
|
||||||
|
return -1;
|
||||||
|
|
||||||
|
*out_bytes = (size_t)(frames * bytes_per_frame);
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
static JSValue wav_make_info(JSContext *js, drwav *wav)
|
||||||
|
{
|
||||||
|
JSValue obj = JS_NewObject(js);
|
||||||
|
JS_SetPropertyStr(js, obj, "channels", JS_NewInt32(js, wav->channels));
|
||||||
|
JS_SetPropertyStr(js, obj, "sample_rate", JS_NewInt32(js, wav->sampleRate));
|
||||||
|
JS_SetPropertyStr(js, obj, "bits_per_sample", JS_NewInt32(js, wav->bitsPerSample));
|
||||||
|
JS_SetPropertyStr(js, obj, "format_tag", JS_NewInt32(js, wav->translatedFormatTag));
|
||||||
|
JS_SetPropertyStr(js, obj, "total_pcm_frames", JS_NewFloat64(js, (double)wav->totalPCMFrameCount));
|
||||||
|
JS_SetPropertyStr(js, obj, "bytes_per_frame", JS_NewInt32(js, (int)drwav_get_bytes_per_pcm_frame(wav)));
|
||||||
|
return obj;
|
||||||
|
}
|
||||||
|
|
||||||
|
JSC_CCALL(wav_info,
|
||||||
|
size_t len;
|
||||||
|
void *data = js_get_blob_data(js, &len, argv[0]);
|
||||||
|
if (data == -1)
|
||||||
|
return JS_EXCEPTION;
|
||||||
|
|
||||||
|
if (!data)
|
||||||
|
return JS_ThrowReferenceError(js, "invalid WAV data");
|
||||||
|
|
||||||
|
drwav wav;
|
||||||
|
if (!drwav_init_memory(&wav, data, len, NULL))
|
||||||
|
return JS_ThrowReferenceError(js, "invalid WAV data");
|
||||||
|
|
||||||
|
JSValue info = wav_make_info(js, &wav);
|
||||||
|
drwav_uninit(&wav);
|
||||||
|
return info;
|
||||||
|
)
|
||||||
|
|
||||||
|
JSC_CCALL(wav_decode,
|
||||||
|
size_t len;
|
||||||
|
void *data = js_get_blob_data(js, &len, argv[0]);
|
||||||
|
if (data == -1)
|
||||||
|
return JS_EXCEPTION;
|
||||||
|
|
||||||
|
if (!data)
|
||||||
|
return JS_ThrowReferenceError(js, "invalid WAV data");
|
||||||
|
|
||||||
|
drwav wav;
|
||||||
|
if (!drwav_init_memory(&wav, data, len, NULL))
|
||||||
|
return JS_ThrowReferenceError(js, "invalid WAV data");
|
||||||
|
|
||||||
|
size_t pcm_bytes;
|
||||||
|
// Calculate size for float output (channels * sizeof(float))
|
||||||
|
size_t bytes_per_frame = wav.channels * sizeof(float);
|
||||||
|
if (wav.totalPCMFrameCount > SIZE_MAX / bytes_per_frame) {
|
||||||
|
drwav_uninit(&wav);
|
||||||
|
return JS_ThrowRangeError(js, "WAV data too large");
|
||||||
|
}
|
||||||
|
pcm_bytes = (size_t)(wav.totalPCMFrameCount * bytes_per_frame);
|
||||||
|
|
||||||
|
float *pcm = NULL;
|
||||||
|
if (pcm_bytes > 0) {
|
||||||
|
pcm = malloc(pcm_bytes);
|
||||||
|
if (!pcm) {
|
||||||
|
drwav_uninit(&wav);
|
||||||
|
return JS_ThrowOutOfMemory(js);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
drwav_uint64 frames_read = 0;
|
||||||
|
if (pcm_bytes > 0)
|
||||||
|
frames_read = drwav_read_pcm_frames_f32(&wav, wav.totalPCMFrameCount, pcm);
|
||||||
|
|
||||||
|
size_t bytes_read = 0;
|
||||||
|
if (pcm_bytes > 0) {
|
||||||
|
bytes_read = (size_t)(frames_read * bytes_per_frame);
|
||||||
|
}
|
||||||
|
|
||||||
|
JSValue result = wav_make_info(js, &wav);
|
||||||
|
// Update format info to reflect f32
|
||||||
|
JS_SetPropertyStr(js, result, "format", JS_NewString(js, "f32"));
|
||||||
|
JS_SetPropertyStr(js, result, "bytes_per_frame", JS_NewInt32(js, (int)bytes_per_frame));
|
||||||
|
|
||||||
|
if (pcm_bytes > 0) {
|
||||||
|
JSValue blob = js_new_blob_stoned_copy(js, pcm, bytes_read);
|
||||||
|
JS_SetPropertyStr(js, result, "pcm", blob);
|
||||||
|
free(pcm);
|
||||||
|
} else {
|
||||||
|
JS_SetPropertyStr(js, result, "pcm", js_new_blob_stoned_copy(js, NULL, 0));
|
||||||
|
}
|
||||||
|
|
||||||
|
drwav_uninit(&wav);
|
||||||
|
return result;
|
||||||
|
)
|
||||||
|
|
||||||
|
static const JSCFunctionListEntry js_wav_funcs[] = {
|
||||||
|
MIST_FUNC_DEF(wav, info, 1),
|
||||||
|
MIST_FUNC_DEF(wav, decode, 1)
|
||||||
|
};
|
||||||
|
|
||||||
|
CELL_USE_FUNCS(js_wav_funcs)
|
||||||
Reference in New Issue
Block a user